张伟昊1,2 ,穆雨墨 1 ,王宇凡 1 ,廖湘力 1.脉冲爆震环境下涡轮性能及气热负荷的时序演变规律[J].航空发动机,2023,49(2):62-71
脉冲爆震环境下涡轮性能及气热负荷的时序演变规律
Temporal Variations of Turbine Performance and Aerothermodynamic Loads under Pulse Detonation
  
DOI:
中文关键词:  脉冲爆震  涡轮  爆震波演化  气动性能  流动损失  流动结构  气动负荷  温度分布
英文关键词:pulse detonation  turbine  propagation of detonation wave  aerodynamic performance  flow loss  flow structure  aerodynam⁃ ic load  temperature distribution
基金项目:国家自然科学基金(52176033)、航空发动机及燃气轮机基础科学中心项目(P2022-B-Ⅱ-009-001)资助
作者单位
张伟昊1,2 ,穆雨墨 1 ,王宇凡 1 ,廖湘力 1 1. 北京航空航天大学 能源与动力工程学院2. 航空发动机气动热力国家级重点实验室:北京 100191 
摘要点击次数: 665
全文下载次数: 556
中文摘要:
      针对脉冲爆震发动机涡轮部件对剧烈时变来流条件和爆震波的非定常响应问题,对脉冲爆震发动机典型工况下某单级 涡轮开展了3维非定常数值仿真,详细讨论了脉冲爆震环境对涡轮流通能力、作功能力、流动损失、温度分布及受力等关键气热特 征的影响。结果表明:爆震波在导叶上游的传播和反射会显著影响涡轮的瞬态流通特征,导致涡轮进口流动在正向和逆向间反复 变化;爆震波压缩作功使进口温度大幅升高,而导叶反射波则会使流体温度进一步升高,甚至超过来流温度的峰值;转静子叶片轴 向间隙内呈现复杂的爆震波干涉与反射结构,在此影响下所研究的涡轮转子来流攻角变化范围超过100°,从而引起涡轮流通能 力、流动结构及损失的剧烈时序变化;在爆震波的冲击下,涡轮导叶排瞬态轴向力超过涡轮稳态设计点的120倍,周向负荷超过稳 态设计点的40倍,涡轮动叶轴向力和周向负荷则可达到稳态设计点的6~7倍,给涡轮结构强度造成极大的影响;爆震波和反射波 对工质的压缩作功可使导叶表面流体的最高瞬态温度达到导叶表面流体周期平均温度的3.5倍以上,动叶的也可达到2.8倍以上, 使叶片冷却的难度增大,且可能引发严重的烧蚀问题。
英文摘要:
      Aimed at the unsteady response of the turbine components of a pulse detonation engine to drastic time-varying flow condi? tions and detonation waves, three-dimensional unsteady numerical simulations were carried out for a single-stage turbine under typical working conditions of the pulse detonation engine. The influences of pulse detonation incoming flow on flow capacity, turbine work output, flow loss, unsteady force, and blade temperature distribution were discussed in detail. The results show that propagation and reflection of detonation waves in the upstream of the vane will significantly affect the transient flow characteristics of the turbine, resulting in repeating oscillations at the turbine inlet between forward and reverse flow. The compression work of the detonation waves causes a significant in? crease in the inlet temperature, while the waves reflected by guide vanes further increase the temperature, even exceeding the peak total temperature of the incoming flow. The interference and reflection of detonation waves in between the axial space of the stator and rotor lead to complex flow structures, which cause the variation range of the incidence angle of the turbine under study to exceed 100 degrees, thus leading to drastic temporal variations of flow capacity, flow structures, and flow loss. Under the impact of detonation waves, the transient axi? al force of turbine guide vanes exceeds 120 times the steady-state design point, the circumferential aerodynamic load exceeds 40 times the steady-state design point as well, the transient axial force and the transient circumferential load of rotor blades are about 6-7 times the steady-state design point, thus causing a significant impact on the strength of the turbine structure. The compression work of the detonation waves and reflection waves on the working medium can make the transient maximum fluid temperature near the surface of the guide vane reach over 3.5 times the averaged periodic temperature, and over 2.8 times for the rotor blade, bringing great challenges to turbine cooling, and potentially causing serious ablation problems.
查看全文  查看/发表评论  下载PDF阅读器