李小龙1 ,梁栋1 ,李丽霞 2 ,陈宏2 ,文佳俊 1 ,陈伟1.微细点阵结构的流动传热强化研究及应用综述[J].航空发动机,2025,51(2):53-67
微细点阵结构的流动传热强化研究及应用综述
Enhancement of Flow and Heat Transfer in Micro-Lattice Structures: A Review ofResearch and Applications
  
DOI:
中文关键词:  微细点阵结构  三周期极小曲面结构  传热强化  热端部件热防护  航空发动机
英文关键词:micro-lattice structures  triply periodic minimal surface structures  heat transfer enhancement  thermal protection of hot-end components  aeroengine
基金项目:国家自然科学基金(52076143)、中央引导地方科技发展项目(2023ZYD0136)、四川省青年科学基金 (2024NSFSC0873)、装备预研教育部联合基金(8091B02052303)资助
作者单位
李小龙1 ,梁栋1 ,李丽霞 2 ,陈宏2 ,文佳俊 1 ,陈伟1 1.四川大学 空天科学与工程学院成都 610065 2.航空工业中国飞机强度研究所西安 710065 
摘要点击次数: 1927
全文下载次数: 361
中文摘要:
      微细点阵结构凭借高表体比、强扰流作用及轻量化特性等优势,在航空发动机、燃气轮机及高超声速动力装置的热端部 件热防护应用中展现出巨大的潜力。介绍了桁架型点阵结构和三周期极小曲面(TPMS)点阵结构的定义、设计方法与流动传热特 性,归纳了其流动传热性能的影响因素及相关优化设计策略,总结了其在航空发动机热端部件冷却和高速飞行器前缘热防护中的 应用研究进展。增材制造技术的进步为复杂微细点阵结构的精确成型提供了工艺保障。其中,桁架型点阵结构通过交叉倾斜的 杆件诱导形成复杂涡流,其传热强化效果相对于传统冷却结构显著提高,但伴随较高的流动压降;三周期极小曲面点阵结构凭借 连续光滑的曲面形态和灵活的设计自由度,结合优化算法后展现出高效精准的冷却调控效果。当前,常规工况下典型点阵结构的 流动传热特性已得到初步阐述,未来研究可以重点关注梯度点阵结构的优化设计方法、复杂高温环境与旋转效应对其流动传热的 影响以及点阵结构与其它冷却技术的协同强化机制等方向,以期进一步推动微细点阵结构在空天热防护系统中的工程应用。
英文摘要:
      Micro-lattice structures demonstrate remarkable potential for thermal protection in hot-end components of aeroengines, gas turbines, and hypersonic propulsion systems, owing to their high surface-to-volume ratio, superior flow disturbance capability, and lightweight characteristics. Focusing on truss-type lattice structures and triply periodic minimal surface (TPMS) lattice structures, this article systematically introduces their definitions, design methodologies, and flow and heat transfer mechanisms. Key factors affecting their thermofluidic performance and corresponding optimization strategies are also summarized. Additionally, the article reviews the progress of their applications in aeroengine hot-end component cooling and thermal protection for leading edges of hypersonic vehicles. Advancements in additive manufacturing provides process guarantee for the precise forming of complex micro-lattice structures. Specifically, truss-type lattice structures significantly enhance heat transfer performance compared to conventional cooling structures by inducing complex vortices through intersecting ligaments, though accompanied by increased flow pressure losses. TPMS lattice structures, owing to their continuous smooth surface morphology and flexible design freedom, demonstrate highly efficient and precise cooling regulation capabilities when integrated with optimization algorithms. Current research has preliminarily elucidated the flow and heat transfer characteristics of typical lattice structures under standard operating conditions. Future studies should prioritize the optimization design methodologies for gradient lattice structures, the impacts of complex high-temperature environments and rotational effects on their flow-heat transfer performance, and the synergistic enhancement mechanisms between lattice structures and other cooling technologies, to advance the engineering applica? tion of micro-lattice structures in aerospace thermal protection systems.
查看全文  查看/发表评论  下载PDF阅读器