郑培英1 ,周泽均 2 ,钟易成 3 ,董威4 ,刘家兴 1.耦合空气系统的燃气轮机拓扑自构建建模方法[J].航空发动机,2024,50(3):33-39 |
耦合空气系统的燃气轮机拓扑自构建建模方法 |
Topological Self-construction Modeling Method for Gas Turbine Coupled with Secondary Air System |
|
DOI: |
中文关键词: 拓扑自构建 空气系统 整机性能模型 燃气轮机 |
英文关键词:topological self-construction secondary air system whole-engine performance model gas turbine |
基金项目:航空动力基础研究项目资助 |
|
摘要点击次数: 1458 |
全文下载次数: 1896 |
中文摘要: |
为了实现通用性强、可扩展性好、灵活高效的整机性能模型通用建模,提出了一种拓扑自构建的燃气轮机整机性能通用
建模方法。基于面向对象思想,采用模块化技术构建通用部件库,再通过拓扑接口关联部件组成整机模型,建立了适用于不同燃
气轮机类型的整机性能仿真模型。耦合了多支路复杂空气系统迭代求解模型,将其作为部件嵌入整机模型,以取代现有的定比例
引气量计算方法。采用跨平台图形开发框架及图像可视化技术,开发了人机交互友好的整机性能预测平台。采用典型双轴燃气
轮机算例,与试验结果进行了对比验证。结果表明:对于动力涡轮出口温度,采用恒定引气比方式和当前耦合方法的计算结果与
试验结果对比得到的最大误差分别为3.36%和1.31%;对于出口压力的计算在多数工况下的计算精度也有所提高。提出的拓扑自
构建的燃气轮机整机性能通用建模方法实现了部件自由搭建及整机拓扑自构建,且耦合空气系统后,整机性能仿真精度显著
提高。 |
英文摘要: |
To achieve a universal, scalable, flexible, and efficient modeling of the whole-engine performance of gas turbines, a
general-purpose whole-engine performance modeling method featuring topological self-construction was proposed. Based on object-
oriented concepts, a general component library was constructed using modular technology, and then the whole-engine model was formed by
associating components through topological interfaces. The whole-engine performance simulation models applicable to different types of
gas turbines were established. The iterative solution model of the multi-branch complex air system was coupled and embedded into the
whole-engine model as a component to replace the existing constant amount bleed air calculation method. A whole-engine performance
prediction platform with a user-friendly human-machine interface was developed using a cross-platform graphics development framework
and image visualization technology. A typical twin-spool gas turbine was used as a calculation case and compared with the experimental
results. The results show that for the outlet temperature of the power turbine, the maximum errors calculated using the constant bleed
method and the present coupling method are 3.36% and 1.31%, respectively. The calculation accuracy of outlet pressure is also improved
under most operating conditions. The proposed topological self-construction general-purpose whole-engine performance modeling method
can easily realize the construction of components and the topological self-construction of the whole-engine. After coupling with the second?
ary air system, the accuracy of the whole-engine performance simulation is significantly improved. |
查看全文 查看/发表评论 下载PDF阅读器 |