袭 奇1 ,王婧1 ,古书怀 1 ,马驰2 ,徐贵强 3 ,朱泊宇 3.基于小波分解-LSTM的航空发动机润滑油量模型[J].航空发动机,2024,50(5):139-144
基于小波分解-LSTM的航空发动机润滑油量模型
Aeroengine Lubricating Oil Quantity Modeling Based on Wavelet-LSTM
  
DOI:
中文关键词:  润滑油量  滑油系统  健康监控  小波分解  长短期记忆网络  航空发动机
英文关键词:lubricating oil quantity  engine lubrication system  health monitoring  wavelet decomposition  Long Short-Term Memory neural network  aeroengine
基金项目:
作者单位
袭 奇1 ,王婧1 ,古书怀 1 ,马驰2 ,徐贵强 3 ,朱泊宇 3 1.华南师范大学 数据科学与工程学院广东汕尾 510631 2.上海飞机客户服务有限公司上海 200241 3.商飞软件有限公司成都 610218 
摘要点击次数: 98
全文下载次数: 97
中文摘要:
      为了描述航空发动机润滑油量在飞机飞行中的变化,综合小波分解和长短期记忆网络(LSTM)的优点构建了小波分解 -LSTM模型,模型的输入是由发动机高压转子转速、低压转子转速、飞机飞行高度、飞行姿态等参数构成的多组时间序列,输出为 对应的润滑油量序列。采用实际运营中的快速存储记录器(QAR)数据,选取润滑油量波动较大的飞机飞行下降阶段进行建模。 对润滑油量数据进行温度校准,去除热胀冷缩因素的影响;选择影响润滑油量变化的关键因素,包括高压转子转速、飞机姿态、飞 行高度、飞行速度等11个输入因素;对这些输入因素和经温度校准后的润滑油量数据做小波分解,降低数据中噪声的影响并减小 数据量,以加快后续机器学习模型的训练速度;采用LSTM神经网络训练数据模型,根据输入因素计算出润滑油量数据。结果表 明:基于真实飞行数据测试结果显示,以升为单位,模型计算的润滑油量与实际润滑油量间均方误差约为0.1, 说明模型能够有效 描述飞机下降阶段中润滑油量的变化,可用于发动机滑油系统健康监控,为发动机滑油系统预测性维护提供新的方法支持。
英文摘要:
      To describe the change of aeroengine lubricating oil quantity during flight, a wavelet-LSTM model was proposed by combining the advantages of wavelet decomposition and the Long Short-Term Memory neural network (LSTM). Inputs of the model are in the form of multi-variable time series data, consisting of key factors such as engine high-pressure rotor speed, low-pressure rotor speed, flight altitude, flight attitude, etc, and the output is the lubricating oil quantity sequence. Real flight Quick Access Record (QAR) data were used, and the data of the descending phase of the flights were selected for modeling due to their high fluctuation in lubricating oil quantity. The raw data of oil quantity was calibrated to eliminate thermal effects. Eleven factors highly related to lubricating oil quantity were selected as inputs, including high-pressure rotor speed, flight attitude, flight altitude, flight speed, etc. Wavelet decomposition was applied to both the input data and the lubricating oil quantity data after thermal calibration to remove noise and reduce data size, to accelerate the training speed of the subsequent machine learning model. LSTM neural network was adopted in the machine learning step to calculate the lubricating oil quantity based on input factors. The results show that based on real flight data, the mean squared error between the calculated lubricating oil quantity and the real lubricating oil quantity is about 0.1 square liters, demonstrating the effectiveness of the proposed method in modeling the change of lubricating oil quantity during the aircraft descending phase and the applicability of the proposed method in health monitoring, providing a new method in support of predictive maintenance of engine lubrication system.
查看全文  查看/发表评论  下载PDF阅读器